Tapahtumat

Kun kirjaudut sisään näet tässä ilmoitukset sinua kiinnostavista asioista.

Kirjaudu sisään

8÷2(2+2)

Vierailija
21.08.2020 |

Paljonko on?

Kommentit (237)

Vierailija
181/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Miksi kaikki kinastelevat "oikeasta vastauksesta" huonosti muotoiltuun tehtävään? Siitä kaikki keskustelujat lienevät samaa mieltä, että tästä ei olla samaa mieltä. Johtopäätös, jonka jokainen voi tehdä: esitetään lasku tavalla, jonka kaikki tajuavat.

Vierailija
182/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Miksi kaikki kinastelevat "oikeasta vastauksesta" huonosti muotoiltuun tehtävään? Siitä kaikki keskustelujat lienevät samaa mieltä, että tästä ei olla samaa mieltä. Johtopäätös, jonka jokainen voi tehdä: esitetään lasku tavalla, jonka kaikki tajuavat.

On helppo olla samaa mieltä ettei olla samaa mieltä. Vaikeampaa on olla samaa mieltä siltä mikä on oikea vastaus. Sellainen kun on. Siksi kinastellaan, kun ei olla samaa mieltä.

Sisältö jatkuu mainoksen alla
Sisältö jatkuu mainoksen alla
Vierailija
183/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Hauskinta on se, että ne jotka saa väärän väittää eniten, että lauseke olisi huonosti tai väärin muotoiltu. :D

Vierailija
184/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Omasta koulutaipalesta on jo sen verran aikaa etten tiedä ovatko säännöt muuttuneet, mutta minun mielestä aloituksesta puuttuu yksi merkki ennen sulkeita.

Ei puutu merkkiä ennen sulkeita, sillä 2 kuuluu niihin sulkeisiin. Kyseinen sulkeissa oleva kohta lasketaan 2x2+2x2 ja vastaus siihen on 8. Koko laskun vastaus on 1.

Jos siinä sulkeiden edessä olisi kertomerkki, laskettaisiin lasku eri tavalla ja vastaus olisi 16, niinkuin moni täällä ehdottaa.

Wtf? En usko tätä selitystä. Sulkumerkkien ulkopuolinen numero on yksiselitteisesti sulkumerkkien ulkopuolinen numero. Ei mikään sulkumerkkien ulkopuolinen numero voi jotenkin mystisesti "kuulua" sulkeisiin.

Totta kai voi. Tuo on ihan yleisesti käytetty merkintätapa mutta kuten huomaat, ei sekään ole kovin yksiselitteinen. Minä olen lukenut matematiikka pitkänä sivuaineena ja itse tulkitsen tuon ns. perstuntumalta olevan juuri noin.

Ei kuulu sulkeisiin, unohde se jo.

2(x+2) = 2*(x+2) = 2*x+4 = 2x+4

Kaikki neljä lauseketta ovat saman arvoisia (sitähän se "Yhtä suuri kuin"-merkki tarkoittaa) mutta mitään muita keskinäisiä sidonnaisuuksia niillä ei ole joiden perusteella voisit mielivaltaisesti pilkkoa osiksi jotain muita termejä joiden osana joku noista lauseista esiintyy.

Kertomerkin puuttumisella ei ole mitään erityismerkitystä joka vaikuttaisi yhtään mihinkään. 

Kyllä, nuo kaikki ovat itsenäisinä laskuina yhtä kuin. Sen sijaan osana isompaa laskutoimitusta kertomerkki tai sen puuttuminen muuttaa laskujörjestyksen jos kakkonen osallistuu jakolaskuun (kertolaskuissahan järjestyksellä ei ole väliä mutta jakolaskussapa onkin, kun laskujärjestys vaikuttaa joko nimittäjään tai osoittamaan ja siten muuttaa kertolaskuksi käännettynä sitä, kerrotaanko ykköstä isommalla vai pienemmällä luvulla!

Olisiko joku lähde esittää tälle väitteelle? 

Vierailija
185/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Miksi kaikki kinastelevat "oikeasta vastauksesta" huonosti muotoiltuun tehtävään? Siitä kaikki keskustelujat lienevät samaa mieltä, että tästä ei olla samaa mieltä. Johtopäätös, jonka jokainen voi tehdä: esitetään lasku tavalla, jonka kaikki tajuavat.

On helppo olla samaa mieltä ettei olla samaa mieltä. Vaikeampaa on olla samaa mieltä siltä mikä on oikea vastaus. Sellainen kun on. Siksi kinastellaan, kun ei olla samaa mieltä.

Kaikki olisivat samaa mieltä, jos lasku olisi muotoiltu yksiselitteisesti.

Vierailija kirjoitti:

Hauskinta on se, että ne jotka saa väärän väittää eniten, että lauseke olisi huonosti tai väärin muotoiltu. :D

Etkö näe ongelmaa, jos sinun mielestäsi selvä lasku ei ole muiden mielestä selvä?

Vierailija
186/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Eihän nuossa merkinnöissä mitään epäselvää ole vaan asia täysin yksiselitteinen.

No eikä ole, johan se on tässä todettu sata kertaa. Yksiselitteinen esitys on joko murtolukuna tai erottamalla osoittaja ja nimittäjä sulkuja käyttäen. Pötköön kirjoittamalla ei voi varmaksi tietää mikä oli tarkoitus.

Voi kuitenkin olettaa että puuttuva kertomerkki on jätetty pois tarkoituksella eikä vahingossa, jolloin kakkonen on sulkein ympäröidyn termin kertoja. Asiahan selviäisi kokonaisesta asiayhteydestä eli jos tietäisimme, kuinka laskutoimitus on johdettu. Irrallisena tämä on vähän teoreettinen yhtä kaikki.

Kaikki muut oletukset kuin lopputulos 1 implikoivat puutteellista merkintätapaa. On unohdettu joko kertomerkki tai sulkeita. Virheellisestä merkinnästä ei voi olettaa saavan oikeaa lopputulosta.

Matematiikan merkistö ja merkitykset ovat laajempia kuin ascii-teksti ja tavanomainen neljän peruslaskutoimituksen syntaksi mahdollistaa. Matemaattisissa merkinnöissä esim. kaavat ovat kaksiulotteisia, sijainnilla suhteessa toisiin on olennainen merkitys laskujärjestyksen parsinnassa. Pötkömuodossa on pakko käyttää ”ylimääräisiä” sulkeita korvaamaan kaksiulotteinen esitystapa.

Tämä esimerkki on tarkoituksella tehty hämäämään, mutta sama pulma ilmenee monin tavoin vaikkapa täysin symbolein esitettynä.

mitä on esim ab/cd? Onko siinä peräkkäin kerto, jako, kerto vasemmalta oikealle? Ei ole. Kertolaskut tässä lasketaan ensin ja sitten jakolasku. Se on täysin ratkaiseva ja oleellinen ero, merkitäänkö kertomerkkiä vai ei. Se ei ole edes tulkinnanvaraista.

Sulkein ympäröidyn lausekkeen kerroin on 8/2. Sinä et voi ottaa yhdestä termistä (8/2(2+2)) mielivaltaisesti vain osaa. 

Kertomerkin merkitsemisellä sulkujen eteen ei ole ratkaisevaa, oleellista tai yhtikäsminkäänlaista merkitystä laskujärjestyksen kannalta.

Sisältö jatkuu mainoksen alla
Vierailija
187/237 |
21.08.2020 |
Näytä aiemmat lainaukset

2+2=4

8:2=4

4*4=16

Vierailija
188/237 |
21.08.2020 |
Näytä aiemmat lainaukset

1.

Laittakaa päässä/paperilla allekkain (tähän en kännykällä saa korjattua sitä oikeaan) mutta osoittajana on nyt siis 8 ja nimittäjänä loppu lauseke eli 2(2+2).

-> Kahdeksan jaetaan yhtälöllä 2*(2+2), joka on 8 -> 8/8= 1.

Sisältö jatkuu mainoksen alla
Vierailija
189/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Ensin sulkeissa oleva lasku, sitten jako- ja kertolaskut vasemmalta oikealle.

8 / 2 (2+2) = 8 / 2 * 4 = 4 * 4 = 16

Mistä ihmeestä tuo kertomerkki pomppasi tuohon väliin? Itse olin jo vastata nolla kun ajattelin, että ekasta tulee 4 ja tokasta 4 ja sitten siinä on kaksi nelosta, mutta tuskin se on 44 joten kumoavat toisensa nelonen ja antinelonen ja lopputulos on nolla.

ps. olen se joka kyseli matikasta tänään aiemmin. Kas tässä näette miten logiikkani toimii

mistä ihmeestä keksit jonkin antinelosen? Todellakin, logiikkasi on merkillistä. Miten oikeasti pärjäät elämässäsi? Enkä tarkoita pahalla, vaan ihan oikeasti hämmästelen. 

Hei, mut tuohan on ihan inhimillistä, varsinkin kun tunnustaa heikkoutensa. Tää 1 trollaaja sitävastoin vaikuttaa aika sekavalta.

Kenestä trollaajasta mahdat nyt puhua. Meitä on nyt tässä ainakin kaksi, jotka näkevät, mitä eroa on lausekkeilla 8/2 * (x+y) ja 8/ 2(x+y). 

Kyllä me kaikki nähdään että toisessa on kertomerkki ja toisesta se on jätetty pois kuten usein tapana on. Jotkut ilmeisesti kuvittelevat että sillä olisi laskujärjestyksen kannalta jotain merkitystä, mikä on tietysti huuhaata. Kumpikin lausekkeista on yhtä suuri kuin 4x+4y.

Eihän ole, jos tämä yhtälö on supistettu lausekkeesta 2x+2y= 2(x+y). 

Vielä kun vaihdat kertoimeksi 2 sijaan 8/2 niin olet maalissa!

Kerroin ei voi olla 8/2 koska se olisi väärin merkitty. Silloin pitäisi lukea 4(2+2) tai muuten rikotaan jälleen yksiselitteisen merkinnän sääntöä. Ainoa järjellinen lopputulos otsikon laskulle on 1, mutta koska esitys ei ole yksiselitteinen pitäisi 16 hyväksyä myös vastaukseksi.

Tottakai kerroin voi olla 8/2, kuten onkin.

Siinä tapauksessa se on väärin merkitty. Kuten tässä on yritetty rautalangasta vääntää.

Vierailija
190/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Kertomerkin puuttumisella ei ole mitään erityismerkitystä joka vaikuttaisi yhtään mihinkään. 

Kerrotko vielä että missä sinä olet matematiikkaa opiskellut?

Tämän voi ilmeisesti tulkita niin että et osaa itsekään tuota naurettavaa väitettäsi perustella, oletetuista matematiikan opinnoistasi huolimatta. 

Mikään ei ole turhempaa kuin henkilökohtaisista meriiteistä vääntäminen anonyymipalstalla, joten siihen minulla ei ole mitään kiinnostusta lähteä. 

Todista väitteesi äläkä lässytä turhia.

Eli sinulla ei ole mitään kompetenssia aiheen tiimoilta mutta koet kuitenkin tarpeelliseksi paukuttaa päätäsi sen tiimoilta? No, ei minulla siihen ole mitään lisättävää.

Jokainen matematiikkaa opiskellut (tai ainakin opintonsa hyväksytysti suorittaneet) tietää mitä eroa on lauseilla a / b(c+d) ja a / b * (c+d).

Sisältö jatkuu mainoksen alla
Vierailija
191/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Miksi kaikki kinastelevat "oikeasta vastauksesta" huonosti muotoiltuun tehtävään? Siitä kaikki keskustelujat lienevät samaa mieltä, että tästä ei olla samaa mieltä. Johtopäätös, jonka jokainen voi tehdä: esitetään lasku tavalla, jonka kaikki tajuavat.

On helppo olla samaa mieltä ettei olla samaa mieltä. Vaikeampaa on olla samaa mieltä siltä mikä on oikea vastaus. Sellainen kun on. Siksi kinastellaan, kun ei olla samaa mieltä.

Kaikki olisivat samaa mieltä, jos lasku olisi muotoiltu yksiselitteisesti.

Vierailija kirjoitti:

Hauskinta on se, että ne jotka saa väärän väittää eniten, että lauseke olisi huonosti tai väärin muotoiltu. :D

Etkö näe ongelmaa, jos sinun mielestäsi selvä lasku ei ole muiden mielestä selvä?

En, olen tottunut siihen. Ihmisillä on eri opettajia ja koulutustasoja. Jossain vaiheessa koulua opetetaan, että pienemmästä ei voi miinustaa isompaa, mutta myöhemmin opetetaan negatiiviset luvut. Opetetaan, että lukujen pitää olla kokonaisia, mutta jossain vaiheessa tulee murto- ja desimaaliluvut. Jne.

Meidän koulutussysteemi ei ole kovin hyvä sen suhteen. Vanhan unohtaminen on paljon vaikeampaa kuin uuden oppiminen. Ihmiset tippuvat kärryiltä ja rupeavat inhoamaan matematiikkaa, koska säännöt muuttuvat.

Vierailija
192/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

1.

Laittakaa päässä/paperilla allekkain (tähän en kännykällä saa korjattua sitä oikeaan) mutta osoittajana on nyt siis 8 ja nimittäjänä loppu lauseke eli 2(2+2).

-> Kahdeksan jaetaan yhtälöllä 2*(2+2), joka on 8 -> 8/8= 1.

Tuossa tapauksessa lausekkeen  pitäisi olla 8/(2*(2+2)), mutta kun ei ole :-)

Sisältö jatkuu mainoksen alla
Vierailija
193/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Kertomerkin puuttumisella ei ole mitään erityismerkitystä joka vaikuttaisi yhtään mihinkään. 

Kerrotko vielä että missä sinä olet matematiikkaa opiskellut?

Tämän voi ilmeisesti tulkita niin että et osaa itsekään tuota naurettavaa väitettäsi perustella, oletetuista matematiikan opinnoistasi huolimatta. 

Mikään ei ole turhempaa kuin henkilökohtaisista meriiteistä vääntäminen anonyymipalstalla, joten siihen minulla ei ole mitään kiinnostusta lähteä. 

Todista väitteesi äläkä lässytä turhia.

Eli sinulla ei ole mitään kompetenssia aiheen tiimoilta mutta koet kuitenkin tarpeelliseksi paukuttaa päätäsi sen tiimoilta? No, ei minulla siihen ole mitään lisättävää.

Jokainen matematiikkaa opiskellut (tai ainakin opintonsa hyväksytysti suorittaneet) tietää mitä eroa on lauseilla a / b(c+d) ja a / b * (c+d).

Arvelinkin ettet onnistu väitettäsi todistamaan, sen takia tämä menikin puoleltasi lähinnä  henkilöstä lässyttämiseen  ja hypoteettisilla meriiteillä briljeeraamiseen. Surkeaa. 

Vierailija
194/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

1.

Laittakaa päässä/paperilla allekkain (tähän en kännykällä saa korjattua sitä oikeaan) mutta osoittajana on nyt siis 8 ja nimittäjänä loppu lauseke eli 2(2+2).

-> Kahdeksan jaetaan yhtälöllä 2*(2+2), joka on 8 -> 8/8= 1.

Tuossa tapauksessa lausekkeen  pitäisi olla 8/(2*(2+2)), mutta kun ei ole :-)

Kun ei tarvitse :)

Sisältö jatkuu mainoksen alla
Vierailija
195/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Kertomerkin puuttumisella ei ole mitään erityismerkitystä joka vaikuttaisi yhtään mihinkään. 

Kerrotko vielä että missä sinä olet matematiikkaa opiskellut?

Tämän voi ilmeisesti tulkita niin että et osaa itsekään tuota naurettavaa väitettäsi perustella, oletetuista matematiikan opinnoistasi huolimatta. 

Mikään ei ole turhempaa kuin henkilökohtaisista meriiteistä vääntäminen anonyymipalstalla, joten siihen minulla ei ole mitään kiinnostusta lähteä. 

Todista väitteesi äläkä lässytä turhia.

Eli sinulla ei ole mitään kompetenssia aiheen tiimoilta mutta koet kuitenkin tarpeelliseksi paukuttaa päätäsi sen tiimoilta? No, ei minulla siihen ole mitään lisättävää.

Jokainen matematiikkaa opiskellut (tai ainakin opintonsa hyväksytysti suorittaneet) tietää mitä eroa on lauseilla a / b(c+d) ja a / b * (c+d).

Söpöä että olet itsekin niin epävarma asiastasi että joudut vielä korostamaan ylimääräisillä välilyönneillä höpinöitäsi.

Eikö a/b(c+d) näyttänyt omaankaan silmään ihan niin yksiselitteiseltä?

Vierailija
196/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

1.

Laittakaa päässä/paperilla allekkain (tähän en kännykällä saa korjattua sitä oikeaan) mutta osoittajana on nyt siis 8 ja nimittäjänä loppu lauseke eli 2(2+2).

-> Kahdeksan jaetaan yhtälöllä 2*(2+2), joka on 8 -> 8/8= 1.

Tuossa tapauksessa lausekkeen  pitäisi olla 8/(2*(2+2)), mutta kun ei ole :-)

Kun ei tarvitse :)

No pakkohan ei tietenkään ole mutta sillon tulos on väärä :-)

Vierailija
197/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Eihän nuossa merkinnöissä mitään epäselvää ole vaan asia täysin yksiselitteinen.

No eikä ole, johan se on tässä todettu sata kertaa. Yksiselitteinen esitys on joko murtolukuna tai erottamalla osoittaja ja nimittäjä sulkuja käyttäen. Pötköön kirjoittamalla ei voi varmaksi tietää mikä oli tarkoitus.

Voi kuitenkin olettaa että puuttuva kertomerkki on jätetty pois tarkoituksella eikä vahingossa, jolloin kakkonen on sulkein ympäröidyn termin kertoja. Asiahan selviäisi kokonaisesta asiayhteydestä eli jos tietäisimme, kuinka laskutoimitus on johdettu. Irrallisena tämä on vähän teoreettinen yhtä kaikki.

Kaikki muut oletukset kuin lopputulos 1 implikoivat puutteellista merkintätapaa. On unohdettu joko kertomerkki tai sulkeita. Virheellisestä merkinnästä ei voi olettaa saavan oikeaa lopputulosta.

Matematiikan merkistö ja merkitykset ovat laajempia kuin ascii-teksti ja tavanomainen neljän peruslaskutoimituksen syntaksi mahdollistaa. Matemaattisissa merkinnöissä esim. kaavat ovat kaksiulotteisia, sijainnilla suhteessa toisiin on olennainen merkitys laskujärjestyksen parsinnassa. Pötkömuodossa on pakko käyttää ”ylimääräisiä” sulkeita korvaamaan kaksiulotteinen esitystapa.

Tämä esimerkki on tarkoituksella tehty hämäämään, mutta sama pulma ilmenee monin tavoin vaikkapa täysin symbolein esitettynä.

mitä on esim ab/cd? Onko siinä peräkkäin kerto, jako, kerto vasemmalta oikealle? Ei ole. Kertolaskut tässä lasketaan ensin ja sitten jakolasku. Se on täysin ratkaiseva ja oleellinen ero, merkitäänkö kertomerkkiä vai ei. Se ei ole edes tulkinnanvaraista.

Sulkein ympäröidyn lausekkeen kerroin on 8/2. Sinä et voi ottaa yhdestä termistä (8/2(2+2)) mielivaltaisesti vain osaa. 

Kertomerkin merkitsemisellä sulkujen eteen ei ole ratkaisevaa, oleellista tai yhtikäsminkäänlaista merkitystä laskujärjestyksen kannalta.

Silloin se on edelleen väärin kirjattu. Ja sillä nimenomaan on merkitystä, vaikka toki aina pitäisi käyttää sulkeita selventämään. A/B(C+D) on joka tapauksessa eri lasku kuin A/B*(C+D) jos kysyt asiaa keneltä tahansa matemaatikolta.

Vierailija
198/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Siis eikö se opeteta jo ala-asteella, että numeron ja sulkeiden väliin ei tarvitse merkitä kertomerkkiä?

8÷2(2+2)

=8÷2×(2+2)

=8÷2×4

=4×4

=16

Vierailija
199/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Kertomerkin puuttumisella ei ole mitään erityismerkitystä joka vaikuttaisi yhtään mihinkään. 

Kerrotko vielä että missä sinä olet matematiikkaa opiskellut?

Tämän voi ilmeisesti tulkita niin että et osaa itsekään tuota naurettavaa väitettäsi perustella, oletetuista matematiikan opinnoistasi huolimatta. 

Mikään ei ole turhempaa kuin henkilökohtaisista meriiteistä vääntäminen anonyymipalstalla, joten siihen minulla ei ole mitään kiinnostusta lähteä. 

Todista väitteesi äläkä lässytä turhia.

Eli sinulla ei ole mitään kompetenssia aiheen tiimoilta mutta koet kuitenkin tarpeelliseksi paukuttaa päätäsi sen tiimoilta? No, ei minulla siihen ole mitään lisättävää.

Jokainen matematiikkaa opiskellut (tai ainakin opintonsa hyväksytysti suorittaneet) tietää mitä eroa on lauseilla a / b(c+d) ja a / b * (c+d).

Söpöä että olet itsekin niin epävarma asiastasi että joudut vielä korostamaan ylimääräisillä välilyönneillä höpinöitäsi.

Eikö a/b(c+d) näyttänyt omaankaan silmään ihan niin yksiselitteiseltä?

En laita ylimääräisiä välilyöntejä minnekään, vaan ihan niihin kohtiin mihin ne kuuluvat, eli jokaisen laskumerkin jälkeen. A/B(C+D) on myös eri lasku kuin A/B*(C+D) mutta nämä ovat "kieliopillisesti" väärin kirjattu.

Vierailija
200/237 |
21.08.2020 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Siis eikö se opeteta jo ala-asteella, että numeron ja sulkeiden väliin ei tarvitse merkitä kertomerkkiä?

Ala-asteella opetetaan, tai oikeammin, jätetään opettamatta paljon muutakin matematiikkaan liittyvää.

Kirjoita seuraavat numerot peräkkäin: yhdeksän yksi kaksi