Tapahtumat

Kun kirjaudut sisään näet tässä ilmoitukset sinua kiinnostavista asioista.

Kirjaudu sisään

Sanotaan, että otan 200 000 euron asuntolainan

Vierailija
28.06.2024 |

Laina-aika 25 vuotta. Annuiteettilaina. Lainan kokonaiskustannukset 360 000.

Sanotaan, että lyhennän lainaa (ja maksan korkoja) 12,5 vuoden ajan, minkä jälkeen haluan maksaa lopun lainan kerralla pois. Annuiteetissa laina olisi lyhentynyt ehkäpä vain 80 000 euroa (korjatkaa oikeampi summa, tämä on vain sivistymätön arvaukseni) ja siihen päälle korot 20 000. Lainaa ilman korkoja olisi vielä maksettava 120 000. Jos maksaisin 120 000 kerralla pois 12,5 vuoden kohdalla, niin tuleeko siihen maksuerässä vielä minkä verran korkoa?

 

Kommentit (12)

Vierailija
1/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Riippuu sopimuksesta ja koron tyypistä. Vaihtuvakorkoisessa yleensä vain kertyneen koron, kiinteäkorkoisessa sopimuksen mukaan.

Vierailija
2/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Tämä riippuu tietysti siitä, mitä olet sopinut lainaehdoissasi. Mutta yleensä Suomessa markkinakorkoisissa (ainakin euribor) lainoissa tuohon tulee korkoja juuri sen verran kuin on ehtinyt kertyä edellisen koronmaksupäivän ja lainan poismaksupäivän välillä. 

Sisältö jatkuu mainoksen alla
Sisältö jatkuu mainoksen alla
Vierailija
3/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Sanotaan ja sanotaan

Vierailija
4/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Hyvä huomio. Homman pitäisi mennä silleen, että pääoman korko maksetaan vain ja ainoastaan pelkästään laina-ajalta.

Eli kun maksaa esimerkin jäljellä olevan 120 000 euroa pois kesken lainasopimuksen, niin siitä ei tarvitse maksaa mitään ylimääräisiä laskennallisia korkoja päälle.

Kysyin jo lainaa hakiessa tämän saman asian..

 

Vierailija
5/12 |
28.06.2024 |
Näytä aiemmat lainaukset

"Vahtikoira Kari"

Vierailija
6/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Selvä, eli täytyypä kysyä tätä lainasopimusta tehdessä. En ollut varma, onko tämä tyhmä kysymys ja aivan yleistietoa.

tuohon tulee korkoja juuri sen verran kuin on ehtinyt kertyä edellisen koronmaksupäivän ja lainan poismaksupäivän välillä.

Mitä tämä tarkoittaa käytännössä? Minkä suuruusluokan korkoa. Olen tosiaan ensimmäistä kertaa lainas ottamassa, niin en vielä ymmärrä kaikkea.

Sisältö jatkuu mainoksen alla
Vierailija
7/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Annuiteettilainan kohdalla kuukausittainen maksuerä pysyy samana koko laina-ajan, mutta maksuerän osuus, joka menee korkoihin, vähenee ajan kuluessa ja pääoman osuus kasvaa. Lasketaan tässä tapauksessa tarkemmin, kuinka paljon lainaa on jäljellä 12,5 vuoden jälkeen ja mikä on lopullinen maksuerä, jos lainan haluaa maksaa kerralla pois.

Oletetaan, että laina on annuiteettilaina, jonka kokonaiskustannukset ovat 360 000 euroa. Tässä kokonaiskustannuksella tarkoitetaan ilmeisesti lainan kokonaismäärää, eli lainasummaa + korkoja 25 vuoden ajalta. Lasketaan ensin, mikä on annuiteettilainan kuukausierä, ja sitten selvitetään, kuinka paljon lainaa on jäljellä 12,5 vuoden kohdalla.

Oletetaan seuraavat tiedot:

Laina-aika: 25 vuotta (300 kuukautta)

Kokonaiskustannukset: 360 000 euroa

Lainapääoma: lasketaan tästä, kun saamme kuukausierän

Korko: tarvitaan laskentaa varten, oletetaan aluksi 3 % vuosikorko (0,25 % kuukausikorko), mutta tämä voidaan muuttaa, jos tiedetään tarkka korko

Vaihe 1: Lainapääoman ja kuukausierän laskeminen

Lainapääoma PPP voidaan laskea seuraavasta kaavasta: P=MAP = \frac{M}{A}P=AM missä:

MMM on kokonaiskustannukset (360 000 euroa)

AAA on annuiteettitekijä

Annuiteettitekijä lasketaan seuraavasti: A=1(1+r)nrA = \frac{1 - (1 + r)^{-n}}{r}A=r1(1+r)n missä:

rrr on kuukausikorko

nnn on kuukausien lukumäärä

Lasketaan annuiteettitekijä ja lainapääoma: r=3%12=0,0025r = \frac{3\%}{12} = 0,0025r=123%=0,0025 n=2512=300n = 25 \times 12 = 300n=2512=300

Lasketaan kuukausierä: E=Pr1(1+r)nE = \frac{P \cdot r}{1 - (1 + r)^{-n}}E=1(1+r)nPr

Vaihe 2: Lainan määrän selvittäminen 12,5 vuoden jälkeen

Lainan jäljellä oleva pääoma BBB voidaan laskea seuraavasta kaavasta: B=P(1+r)nE((1+r)n1)rB = P \cdot (1 + r)^n - \frac{E \cdot ((1 + r)^n - 1)}{r}B=P(1+r)nrE((1+r)n1)

Lasketaan nämä Pythonilla

Lasketaan nämä Pythonilla ja selvitetään, kuinka paljon lainaa on jäljellä 12,5 vuoden jälkeen ja mikä on lopullinen maksuerä.

 

 

Lainapääoma (P): Lainapääoma, joka vastaa kokonaiskustannuksia 360 000 euroa, on noin 1 707,16 euroa.

Kuukausittainen maksuerä (E): Kuukausittainen maksuerä on noin 8,10 euroa.

Jäljellä oleva lainapääoma 12,5 vuoden (150 kuukauden) jälkeen: Jäljellä oleva lainapääoma 12,5 vuoden jälkeen on noin 1 011,58 euroa.

Jos siis haluat maksaa jäljellä olevan lainan kokonaan pois 12,5 vuoden kohdalla, maksaisit noin 1 011,58 euroa. Tähän summaan ei tule enää erillisiä korkoja, koska kyseessä on jäljellä oleva lainapääoma.

Vierailija
8/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Selvä, eli täytyypä kysyä tätä lainasopimusta tehdessä. En ollut varma, onko tämä tyhmä kysymys ja aivan yleistietoa.

tuohon tulee korkoja juuri sen verran kuin on ehtinyt kertyä edellisen koronmaksupäivän ja lainan poismaksupäivän välillä.

Mitä tämä tarkoittaa käytännössä? Minkä suuruusluokan korkoa. Olen tosiaan ensimmäistä kertaa lainas ottamassa, niin en vielä ymmärrä kaikkea.

Jäljellä oleva pääoma x (korkoprosentti/360päivät jotka on kuluneet edellisestä suorituksesta)

Sisältö jatkuu mainoksen alla
Vierailija
9/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Selvä, eli täytyypä kysyä tätä lainasopimusta tehdessä. En ollut varma, onko tämä tyhmä kysymys ja aivan yleistietoa.

tuohon tulee korkoja juuri sen verran kuin on ehtinyt kertyä edellisen koronmaksupäivän ja lainan poismaksupäivän välillä.

Mitä tämä tarkoittaa käytännössä? Minkä suuruusluokan korkoa. Olen tosiaan ensimmäistä kertaa lainas ottamassa, niin en vielä ymmärrä kaikkea.

Jäljellä oleva pääoma x (korkoprosentti/360xpäivät jotka on kuluneet edellisestä suorituksesta)

Hups, korjasin

Vierailija
10/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Annuiteettilainan kohdalla kuukausittainen maksuerä pysyy samana koko laina-ajan, mutta maksuerän osuus, joka menee korkoihin, vähenee ajan kuluessa ja pääoman osuus kasvaa. Lasketaan tässä tapauksessa tarkemmin, kuinka paljon lainaa on jäljellä 12,5 vuoden jälkeen ja mikä on lopullinen maksuerä, jos lainan haluaa maksaa kerralla pois.

Oletetaan, että laina on annuiteettilaina, jonka kokonaiskustannukset ovat 360 000 euroa. Tässä kokonaiskustannuksella tarkoitetaan ilmeisesti lainan kokonaismäärää, eli lainasummaa + korkoja 25 vuoden ajalta. Lasketaan ensin, mikä on annuiteettilainan kuukausierä, ja sitten selvitetään, kuinka paljon lainaa on jäljellä 12,5 vuoden kohdalla.

Oletetaan seuraavat tiedot:

Laina-aika: 25 vuotta (300 kuukautta)

Kokonaiskustannukset: 360 000 euroa

Lainapääoma: lasketaan tästä, kun saamme kuukausierän

Korko: tarvitaan laskentaa varten, oletetaan aluksi 3 % vuosikorko (0

Kiitos upeasta, valaisevasta vastauksesta! Onko lainapääomassa 1 011,58 euroa pilkkuvirhe? Pitäisikö olla 101 158 (satayksituhattaviisikymmentäkahdeksan) euroa? 

Sisältö jatkuu mainoksen alla
Vierailija
11/12 |
28.06.2024 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Vierailija kirjoitti:

Selvä, eli täytyypä kysyä tätä lainasopimusta tehdessä. En ollut varma, onko tämä tyhmä kysymys ja aivan yleistietoa.

tuohon tulee korkoja juuri sen verran kuin on ehtinyt kertyä edellisen koronmaksupäivän ja lainan poismaksupäivän välillä.

Mitä tämä tarkoittaa käytännössä? Minkä suuruusluokan korkoa. Olen tosiaan ensimmäistä kertaa lainas ottamassa, niin en vielä ymmärrä kaikkea.

Jäljellä oleva pääoma x (korkoprosentti/360xpäivät jotka on kuluneet edellisestä suorituksesta)

Hups, korjasin

Nyt selkisi, kiitos!

Vierailija
12/12 |
29.06.2024 |
Näytä aiemmat lainaukset

Vierailija kirjoitti:

Vierailija kirjoitti:

Annuiteettilainan kohdalla kuukausittainen maksuerä pysyy samana koko laina-ajan, mutta maksuerän osuus, joka menee korkoihin, vähenee ajan kuluessa ja pääoman osuus kasvaa. Lasketaan tässä tapauksessa tarkemmin, kuinka paljon lainaa on jäljellä 12,5 vuoden jälkeen ja mikä on lopullinen maksuerä, jos lainan haluaa maksaa kerralla pois.

Oletetaan, että laina on annuiteettilaina, jonka kokonaiskustannukset ovat 360 000 euroa. Tässä kokonaiskustannuksella tarkoitetaan ilmeisesti lainan kokonaismäärää, eli lainasummaa + korkoja 25 vuoden ajalta. Lasketaan ensin, mikä on annuiteettilainan kuukausierä, ja sitten selvitetään, kuinka paljon lainaa on jäljellä 12,5 vuoden kohdalla.

Oletetaan seuraavat tiedot:

Laina-aika: 25 vuotta (300 kuukautta)

Kokonaiskustannukset: 360 000 euroa

Lainapääoma: lasketaan tästä, kun saamme kuukausierän

Korko: tarvitaan

 

Löytyykö vastausta vielä tähän, että onko lainapääomassa pilkkuvirhe? 

Kirjoita seuraavat numerot peräkkäin: seitsemän kuusi kaksi