Onko yleisesti käytetty sanonta "puolet kalliimpaa" oikein? (kielinerot)
eli kun tuolleen sanotaan, niin tarkoitetaan kaksinkertaisesti kallimpaa...eli jos pirkka sokeri maksaa vaikka 1 € ja toinen sokeri 2 €, niin sanotaan, että se toinen sokeri on "puolet kalliimpaa", vaikka sehän on oikeasti "kaksinkertaisesti kalliimpaa" (puolet kalliimpaa olisi 1,5 €)
Mutta olen muistaakseni kuulut, että se olisi oikea sanontatapa (vaikka ei siis loogisesti oikein)
Kommentit (18)
vakiintunut käyttöön, vaikka ei ole oikein. Onhan se halvempi silti puolet siitä kalliimman hinnasta ja jotenkin siitä kääntyy myös muka toisin päin, että kalliimpi on puolet kalliimpaa. Mäkin saatan käyttää, vaikka matikka oli vahvin aineeni ja osaan kyllä sitten laskuissa tehdä nuo samat asiat ihan oikein.
tuplat verrattuna verrokkiin (eli 200 % kalliimpaa)! ap
Mutta silti ON OIKEIN käyttää sitä oikein, kun tarkoitetaan 50% kallimmpaa. Ne typerykset sittan vaan puhuvat tai tajuavat väärin. Piste.
Vanhempi merkitys on varmaan tuo 1 --> 2 €, mutta joissain kirjoissa annetaan ainoaksi oikeaksi merkitykseksi 1 --> 1,5 €. Kannatta siis omassa puheessaan välttää, kun on tulkinnanvarainen.
ks. http://scripta.kotus.fi/visk/sisallys.php?p=638
kohta (e) "Barbien saksalainen kopio on Steffi, joka on yhtä ihana kuin Barbie mutta puolet halvempi."
siinähän tarkoitetaan, että jos barbie on 10 €, siitä otetaan puolet (5 €), niin Steffi maksaa 5 €...
niin voisiko sen kääntää sitten toisin päin eli halvemman kalliimmaksi (eli Barbie on puolet kalliimpi kuin Steffi)? ja samat hinnat kuin yllä...
jonkun äikänopen pitäisi kyllä tähän vastata...
ap
Jos A:n hiunta on 5 euroa ja B:n 10 euroa, niin B on kaksi kertaa niin kallis kuin A.
tuplat verrattuna verrokkiin (eli 200 % kalliimpaa)!
ap
100% kalliimpi. 200% kalliimpi on kolminkertainen hinta.
tuplat verrattuna verrokkiin (eli 200 % kalliimpaa)!
ap100% kalliimpi. 200% kalliimpi on kolminkertainen hinta.
ap
"puolet kalliimpi" olisi 1,5 euron, "kaksinkertainen" 2 ja "kaksi kertaa kalliimpi" 3 euroa, niin että ollaanpa tosiaan tarkkoja.
Luvut ovat lukuja, eikä ole olemassa "oikeita sanontatapoja", jotka ovat matemaattisesti väärin - on vain vääriä ilmaisuja, joita joku yrittää tökerösti peitellä vetoamalla, että "kaikkihan sen näin ymmärtää". :D
Vedin leukaa kuusi kertaa. Seuraavalla viikolla edistyin ja vedinkin kolme kertaa enemmän.
Montako kertaa siis?
a) 6
b) 9
c) 12
d) 18
e) 24
ks. <a href="http://scripta.kotus.fi/visk/sisallys.php?p=638" alt="http://scripta.kotus.fi/visk/sisallys.php?p=638">http://scripta.kotus.fi/visk/sisallys.php?p=638</a>
kohta (e) "Barbien saksalainen kopio on Steffi, joka on yhtä ihana kuin Barbie mutta puolet halvempi."
siinähän tarkoitetaan, että jos barbie on 10 €, siitä otetaan puolet (5 €), niin Steffi maksaa 5 €...
niin voisiko sen kääntää sitten toisin päin eli halvemman kalliimmaksi (eli Barbie on puolet kalliimpi kuin Steffi)? ja samat hinnat kuin yllä...
jonkun äikänopen pitäisi kyllä tähän vastata...
ap
lähtöhinta on näissä eri. Ensimmäisessä lähtöhinta on 10 euroa (halvempi KUIN BARBI, 10 euroa) ja toisessa 5 euroa (Barbie on kallimpi KUIN STEFFI, 5 euroa).
Puolet kymmenestä on 5.
Puolet viidestä on 2,5.
Vedin leukaa kuusi kertaa. Seuraavalla viikolla edistyin ja vedinkin kolme kertaa enemmän. Montako kertaa siis? a) 6 b) 9 c) 12 d) 18 e) 24
ap veti kolme kertaa enemmän kuin alun perin, eli
6 + (3 x 6) = 24 leukaa
tiedän myös miten sanontaa yleisesti käytetään, siksi halusinkin kysyä, onko se oikein:
Täällä keskustelua samasta aiheesta
http://murobbs.plaza.fi/yleista-keskustelua/458803-onko-puolet-enemman-…
ap
"Tää saattaa olla toisaalta niitä asioita missä piileekin ihmisten mielestä paljon eroavaisuuksia. Kaikki tuntemani ihmiset ja kaverini ainakin käsittävät nuo asiat päivänselvästi. Tuplasti enemmän on sama kuin puolet enemmän. Jos mennään vaikka tallinnanristeilylle ja kaveri heittää että "vittu tää pullo maksaa tuplasti enemmän suomessa" tai että "tää toblerone on puolet kalliimpi laivalla" on asia ainakin minulle päivänselvä."
ap
todii, eli tämän henkilön mukaan yleisesti käytetty "väärä" ilmaisutapa on oikein:
"Sitten ilmaus A sai puolta enemmän kuin B. Se on puhtaasti sovinnainen sanonta: kielen puhujat tietävät, että erotuksena on A:n, ei B:n osuuden puolikas, joten merkitys on sama kuin lauseissa A sai 2 kertaa enemmän kuin B ja A sai 2 kertaa niin paljon kuin B. Tämä on tietysti vastoin matemaattista ajattelua, sillä puolet on sama kuin 50 %, ja lauseessa A sai 50 % enemmän kuin B tuo 50 % lasketaan B:n eikä A:n osuudesta. Puolta enemmän ei kuulu täsmälliseen kieleen, mutta muuten sitäkin sopii huoletta käyttää. "
kai tuo ihan pätevä kaveri on? ainakin noita kielioppeja paljon kirjoittelee
http://www.cs.tut.fi/~jkorpela/personal.html
ap
Vedin leukaa kuusi kertaa. Seuraavalla viikolla edistyin ja vedinkin kolme kertaa enemmän.
Montako kertaa siis?
a) 6
b) 9
c) 12
d) 18
e) 24
http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html
ap`
Vedin leukaa kuusi kertaa. Seuraavalla viikolla edistyin ja vedinkin kolme kertaa enemmän.
Montako kertaa siis?
a) 6
b) 9
c) 12
d) 18
e) 24
<a href="http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html" alt="http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html">http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html</a>ap`
Ensin kuusi kertaa. Ja sitten seuraavalla viikolla kolme kertaa enemmän niin tulos on 6+3 eli yhdenksän kertaa.
Vedin leukaa kuusi kertaa. Seuraavalla viikolla edistyin ja vedinkin kolme kertaa enemmän.
Montako kertaa siis?
a) 6
b) 9
c) 12
d) 18
e) 24
<a href="<a href="http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html" alt="http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html">http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html</a>" alt="<a href="http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html" alt="http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html">http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html</a>"><a href="http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html</a>" alt="http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html</a>">http://www.cs.helsinki.fi/u/kohonen/suomi/kaksikertaa.html</a></a…;ap`
Ensin kuusi kertaa. Ja sitten seuraavalla viikolla kolme kertaa enemmän niin tulos on 6+3 eli yhdenksän kertaa.
Tässä just opitaan, että ei saa liikaa miettiä!
ap
tuplat verrattuna verrokkiin (eli 200 % kalliimpaa)!
ap